演算的基本论证形式 |
名字 | 相继式 | 描述 |
肯定前件论式 | (p → q) ; p ├ q | 如果 p 则 q; p; 所以, q |
否定后件论式 | (p → q) ; ¬q ├ ¬p | 如果 p 则 q; 非 q; 所以,非 p |
假言三段论式 | (p → q) ; (q → r) ├ (p → r) | 如果 p 则 q; 如果 q 则 r; 所以,如果 p 则 r |
选言三段论式 | (p ∨ q) ; ¬p ├ q | 要么 p 要么 q; 非 p; 所以, q |
创造性二难论式 | (p → q)∧(r → s) ; (p ∨ r) ├ (q ∨ s) | 如果 p 则 q; 并且如果 r 则 s; 但是要么 p 要么 r; 所以,要么 q 要么 s |
破坏性二难论式 | (p → q)∧(r → s) ; (¬q ∨ ¬s) ├ (¬p ∨ ¬r) | 如果 p 则 q; 并且如果 r 则 s; 但是要么非 q 要么非 s; 所以,要么非 p 要么非 r |
简化论式 | (p ∧ q) ├ p | p 与 q 为真; 所以,p 为真 |
合取式 | p, q ├ (p ∧ q) | p 与 q 分别为真; 所以,它们结合起来是真 |
增加论式 | p ├ (p ∨ q) | p 是真; 所以析取式(p 或 q)为真 |
合成论式 | (p → q) ∧ (p → r) ├ p → (q ∧ r) | 如果 p 则 q; 并且如果 p 则 r; 所以,如果 p 是真则 q 与 r 为真 |
德·摩根定律(1) | ¬(p ∧ q) ├ (¬p ∨ ¬ q) | (p 与 q)的否定等价于(非 p 或非 q) |
德·摩根定律(2) | ¬(p ∨ q) ├ (¬p ∧ ¬ q) | (p 或 q)的否定等价于(非 p 与非 q) |
交换律(1) | (p ∨ q) ├ (q ∨ p) | (p 或 q)等价于(q 或 p) |
交换律(2) | (p ∧ q) ├ (q ∧ p) | (p 与 q)等价于(q 与 p) |
结合律(1) | p ∨ (q ∨ r) ├ (p ∨ q) ∨ r | p 或(q 或 r)等价于(p 或 q)或 r |
结合律(2) | p ∧ (q ∧ r) ├ (p ∧ q) ∧ r | p 与(q 与 r)等价于(p 与 q)与 r |
分配律(1) | p ∧ (q ∨ r) ├ (p ∧ q) ∨ (p ∧ r) | p 与(q 或 r)等价于(p 与 q)或(p 与 r) |
分配律(2) | p ∨ (q ∧ r) ├ (p ∨ q) ∧ (p ∨ r) | p 或(q 与 r)等价于(p 或 q)与(p 或 r) |
双重否定律 | p ├ ¬¬p | p 等价于非 p 的否定 |
换位律 | (p → q) ├ (¬q → ¬p) | 如果 p 则 q 等价于如果非 q 则非 p |
实质蕴涵律 | (p → q) ├ (¬p ∨ q) | 如果 p 则 q 等价于要么非 p 要么 q |
实质等价律(1) | (p ↔ q) ├ (p → q) ∨ (q → p) | (p 等价于 q) 意味着,要么(如果 p 是真则 q 是真)要么(如果 q 是真则 p 是真) |
实质等价律(2) | (p ↔ q) ├ (p ∧ q) ∨ (¬q ∧ ¬p) | (p 等价于 q) 意味着,要么(p 与 q 都是真)要么(p 和 q 都是假) |
输出律 | (p ∧ q) → r ├ p → (q → r) | 从(如 p 与 q 为是真则 r 是真)我们可以证明(如果 q 是真则 r 为真的条件是 p 为真) |
输入律 | p → (q → r) ├ (p ∧ q) → r | 如果p,则(q为真时,r为真)等价于如果(p与q)为真,则r为真 |
重言式 | p ├ (p ∨ p) | p 是真等价于 p 是真或 p 是真 |
排中律 | ├ (p ∨ ¬p) | p 或非 p 是真 |